Motion control and communication of cooperating intelligent robots by fuzzy signatures

Áron Ballagi, László.T. Kóczy, Tamás D. Gedeon

Abstract—This paper presents two examples of usage of fuzzy signatures in the field of mobile robotics. The first shows a complex lateral drift control method base on fuzzy signatures. This method inspects the motion system of the robot as a whole, unlike as simple parts of a complex system. The state space is written down by fuzzy signatures which add up flexibility, adaptability and learning ability to the system.

In the second experiment a new communication approach is investigated for intelligent cooperation of autonomous mobile robots. Effective, fast and compact communication is one of the most important cornerstones of a high-end cooperating system. In this paper we propose a fuzzy communication system where the codebooks are built up by fuzzy signatures. We use cooperating autonomous mobile robots to solve some logistic problems.

I. INTRODUCTION

Fuzzy signatures which structure data into vectors of fuzzy values, each of which can be a further vector, are introduced to handle complex structured data [1] [2] [3]. This will widen the application of fuzzy theory to many areas where objects are complex and sometimes interdependent features are to be classified and similarities / dissimilarities evaluated. Often, human experts can and must make decisions based on comparisons of cases with different numbers of data components, with even some components missing. Fuzzy signature is created with this objective in mind. This tree structure is a generalization of fuzzy sets and vector valued fuzzy sets in a way modeling the human approach to complex problems. However, when dealing with a very large data set, it is possible that they hide hierarchical structure that appears in the sub-variable structures.

This paper deals with fuzzy signatures as complex state description method in field of control of mobile robots and

The research was supported by HUNOROB (HU0045) EEA grant, a Széchenyi University Main Research Direction Grant 2009, and National Scientific Research Fund Grants OTKA T048832 and K75711.

Á. Ballagi is with the Department of Automation, Széchenyi István University, H-9026, Győr, Egyetem tér 1., Hungary (corresponding author to provide e-mail: ballagi@sze.hu).

L.T. Kóczy is with Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, H-1117, Budapest, Magyar tudósok krt. 2., Hungary and Inst. of Mechanical, Electrical Engineering and Information Technology, Széchenyi István University, H-9026, Győr, Egyetem tér 1., Hungary (e-mail: koczy@tmit.bme.hu)

T.D. Gedeon is with the Department of Computer Science, Australian National University, Acton, ACT (Canberra), Australia (e-mail: tom.gedeon@anu.edu.au)

robot cooperation. The first example stands near to control theory and gives a new aspect of motion control supervisory systems.

The second task, intelligent cooperation of autonomous mobile robots, is a new and exciting research field. We propose a fuzzy communication system where the codebooks are built up by fuzzy signatures. After an overview of this type of fuzzy communication we will deal with some real scenarios of autonomous mobile robot cooperation. The base idea of this example has come from the partly unpublished research projects at LIFE [8]. The paper presents a cooperation system where a group of autonomous intelligent mobile robots is supposed to solve transportation problems according to the exact instruction given to the Robot Foreman (R_0) . The other robots have no direct communication links with R₀ and all others, but can solve the task by intention guessing from the actual movements and positions of other robots, even though they might not be unambiguous.

II. FUZZY SIGNATURES

The original definition of fuzzy sets was $A: X \rightarrow [0,1]$, and was soon extended to *L*-fuzzy sets by Goguen [4]

$$A_{s}: X \to \left[a_{i}\right]_{i=1}^{k}, a_{i} = \left\{\frac{\left[0,1\right]}{\left[a_{ij}\right]_{j=1}^{k_{i}}}, a_{ij} = \left\{\frac{\left[0,1\right]}{\left[a_{ijl}\right]_{l=1}^{k_{ij}}}, \right.$$
(1)

 $A_L: X \to L$, *L* being an arbitrary algebraic lattice. A practical special case, *Vector Valued Fuzzy Sets* was introduced by Kóczy [5], where $A_{V,k}: X \to [0,1]^k$, and the range of membership values was the lattice of *k*-dimensional vectors with components in the unit interval. A further generalization of this concept is the introduction of fuzzy signature and signature sets, where each vector component is possibly another nested vector (right).

Fuzzy signature can be considered as special multidimensional fuzzy data. Some of the dimensions are interrelated in the sense that they form sub-group of variables, which jointly determine some feature on higher level [6]. Let us consider an example. Fig. 1 shows a fuzzy signature structure.

The fuzzy signature structure shown in Fig. 1 can be represented in vector form. Here $[x_{11} x_{12}]$ from a sub-group

that corresponds to a higher level compound variable of x_1 . $[x_{221} x_{222} x_{223}]$ will then combine together to form x_{22} and $[x_{21} [x_{221} x_{222} x_{223}] x_{23}]$ is equivalent on higher level with $[x_{21} x_{22} x_{23}] = x_2$. Finally, the fuzzy signature structure will become $x = [x_{221} x_{222} x_{223}]$ in the example.

Fig. 1. A Fuzzy Signature Structure

The relationship between higher and lower level is govern by the set of fuzzy aggregations. The results of the parent signature at each level are computed from their branches with appropriate aggregation of their child signature. Let a_1 be the aggregating associating x_{11} and x_{12} used to derive x_1 , thus $x_1 = x_{11}a_1x_{12}$. By referring to Fig. 1, the aggregations for the whole signature structure would be a_1, a_2, a_{22} and a_3 . The aggregations a_1, a_2, a_{22} and a_3 are not necessarily identical or different. The simplest case for a_{22} might be the min operation, the most well known t-norm.

III. MOBIL ROBOT MOTION CONTROL SYSTEM

The differentially steered drive system used in many robots is essentially the same arrangement as that used in a wheelchair. Thus, steering the robot is just a matter of varying the speeds of the drive wheels. At least two independent driving chain are used in most of differentially steered drive system. Each driver wheel has the own controller in a traditional motion system, which give a hard tuned, rigid arrangement. In this paper we propose a complex lateral drift control method base on fuzzy signatures. This method inspects the motion system as a whole, unlike as simple parts of a complex system. The state space is written down by fuzzy signatures which adds up flexibility, adaptability and learning ability to system.

A. Lateral Drift Control Method

We propose a motion control method which treats the robot locomotion as whole, without inspection of drive and other system separately. The base of this method is the lateral drift measure. Every sampling time the sensors collect information about the difference between the theoretical trajectory and the real trajectory or position as Fig. 2 shows. For the sake of simplicity let us assume that the followed lane is parallel with the x-axis and linear. The $e(T_1)$ is the measured error (lateral drift) on the T_1 sampling time.

Essentially, this implementation attempts to control a secondary effect, the overall locomotion behavior of the robot, rather than a primary effect (individual motor speed).

Theoretically the measured error and changing of the error (speed and direction) give enough information to control and correct the lane-following of the robot. We built fuzzy signature base control algorithms to cope this relatively complex control problem.

Fig. 2. Track of the robot on a Cartesian coordinate plane

B. Fuzzy Signature Based Motion Control

In the lateral drift motion control method the controlled robot is a complex system which can be handled by fuzzy signatures based supervisory regulator. The *reference* subtree (R_e) is the base of the controller, which depicts the state of the robot trajectory drift. Equation (2) and Fig. 4 show the scheme of fuzzy signature for R_e , where e is the measure of lateral error and de/dt is the velocity of error changing. A new branch appears on higher level: the Δe , the error changing between two sampling, signs the success of preview manipulation of controller. The Δe is very important for self-diagnosis and latter adaptation.

$$R_{e} = \begin{bmatrix} D \\ \triangle e \end{bmatrix} = \begin{bmatrix} e \\ \frac{de}{dt} \\ \triangle e \end{bmatrix}$$
(2)

The used linguistic value in signatures are:

$$e = \begin{cases} Negative Big, Negative Small, Zero, \\ Positive Small, Positive Big \end{cases}$$
$$\frac{de}{dt} = \begin{cases} Fast DownGrade, DownGrade, Zero, \\ UpGrade, Fast UpGrade \end{cases}$$
$$\triangle e = \begin{cases} Negative Big, Negative Small, Zero, \\ Positive Small, Positive Big \end{cases}$$

The above described fuzzy signature can build an basic reference for motion control. If we want use a more sophisticated system then the fuzzy signature is had to complement some new branches or sub-trees. This is a real advantage over classical control structure, where the whole system is had to change in this case.

Let us add a behavior sub-tree (B) to our system. Here the behavior means the control strategy of trajectory following. For example, if the following behavior is soft then the controller softly correct the lateral drift from theoretical trajectory (Fig. 3).

The motion control fuzzy signature complemented with controller behavior is the following:

$$C = \begin{bmatrix} R_e \\ B \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} e \\ \frac{de}{dt} \end{bmatrix} \\ \begin{bmatrix} \Delta e \\ B \end{bmatrix}$$
(3)

where the behavior is $B = \{Soft, Moderate, Hard\}$.

The relationship between higher and lower level is govern by the set of fuzzy aggregations. The results of the parent signature at each level are computed from their branches with appropriate aggregation of their child signature. The fuzzy signature behavior is highly influenced by the chosen aggregations. In our case we use simple fuzzy aggregations, on lowest or leaf level *max*, on the second and third level *average* and on the highest level the *production* aggregation methods are used.

Fig. 4. Re and the final C fuzzy signatures

This fuzzy signature writes down the state of the robot locomotion in every sampling time and makes a reference signal for control decision. The controller can work with a very simple fuzzy rule base because the fuzzy signature prepares the data for it

Let us take an example with linguistic values and numerical signatures:

$$C_{1} = \begin{bmatrix} \begin{bmatrix} Negative & Big \\ UpGrade \end{bmatrix} \\ Positive & Small \\ Moderate \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 0.1 \\ 0.6 \\ 0.7 \end{bmatrix} \\ 0.5 \end{bmatrix}$$
(4)

After the low level aggregation the higher level will be described as:

$$C_1 = \begin{bmatrix} 0.3\\ 0.7 \end{bmatrix}$$
(5)

Finally, the fuzzy signature structure will be:

$$C_1 = \begin{bmatrix} 0.5\\0.5 \end{bmatrix} \rightarrow \begin{bmatrix} 0.25 \end{bmatrix} \tag{6}$$

Therefore the C_1 control parameter is *Negative Small*, and the manipulation is taken according to this state and behavior fuzzy signature, the robot tend to go back to track with moderate characteristic.

IV. FUZZY COMMUNICATION OF COOPERATING ROBOTS

One of the most important parameters of effective efficient communication. cooperation is Because communication itself very expensive, it is much more advisable to build up as large as possible contextual knowledge bases and codebooks in robot controllers in order to shorten their communication process. That is, if it essentially reduces the amount of information that must be transmitted from one to another, than to concentrate all contextual knowledge in one of them and then to export its respective parts whenever they are needed in other robot(s). It appears to be very important in the cooperation and communication of intelligent robots or physical agents that the information exchange among them is as effective and compressed as possible [7].

A. The system in hand

Let us examine a subset of our overall robot cooperation problem work in practice. There is a warehouse where some square boxes wait for ordering. Various configurations can be made from them, based on their color and tags. We have a group of autonomous intelligent robots which try to build the actual order of boxes according to the exact instructions given to the R₀ (foreman) robot. The other robots have no direct communication links with R_0 , but they are able to observe the behavior of R_0 and all others, and they all posses the same codebook containing the base rules of storage box ordering. Every box has an identity color and tag on one side of it. The individual boxes can be shifted or rotated, but always two robots are needed for actually moving a box, as they are heavy. If two robots are pushing the box in parallel the box will be shifted according the joint forces of the robots. If the two robots are pushing in opposite directions positioned at the diagonally opposite ends, the box will turn around the center of gravity. If two robots are pushing in parallel, and one is pushing in the opposite direction, the box will not move or rotate, just like when only a single robot pushes. Under these conditions the task can be solved, if all robots are provided with suitable algorithms that enable intention guessing from the actual movements and positions, even though they might be unambiguous.

Fig. 5. presents an example of how eleven boxes can be arranged. The robots would move or push the boxes, so one box has max two neighbors on their opposite sides. The tag of the box, which is always on the Relative-North side of the box (as we will see below), must be visible (so do not adjoin any other object), so the box can touch others only the East or/and West sides.

Fig. 5. Examples of box arrangement

There are just a few essentially different robot positions allowed. Because two robots are needed for pushing or turning a box, at each side of the boxes, two spaces are available for the robots manipulating them: the "counterclockwise position" and the "clockwise position" (see Fig. 6). The cooperating combination of robots is denoted by $C_{i,j,(k)}^{b}$ where i,j and k is the number of the robots (k appears only in stopping combinations), and b is the number of the box. There are three essentially different combinations (Fig. 6.), $C_{1,2}^{i} = P$ is the "pushing or shifting combination", when two robots (R_1 and R_2) are side by side at the same side of the table; $C_{1,2}^{i} = RC$ stands for "counterclockwise rotation combination"; and $C_{1,2}^{i} = RW$ denotes "clockwise rotation combination".

Eventually "stopping combination" is mentioned where two robots intend to do a move operation (shift or rotate), and another robot that has recognized the goal box configuration positions itself to prevent a certain move. $C_{1,2,3}^{i} = ST$ is essentially a three robot combination, where either R₁ and R₂ are attempting a shift and R₃ positions itself to prevent it, or R_2 and R_3 / R_1 and R_3 are starting a rotation and R₁ and R₂ prevent it, knowing that the intended move is wrong from the point of view of the goal configuration. However, in $C_{1,2,3}^i = ST$ it is sufficient that R_1 takes up its $P_1^i = [N_B, CC]$ position if R₃ is aware that both the shift and the rotate counterclockwise combinations would be wrong from the point of view of the goal, thus R₃ immediately stops the maneuver by assuming the $P_3^i = [S_B, CW]$ position, thus preventing both shift and clockwise rotation. This is an exception where a two robot combination other than the ones listed in Fig. 6 is legal as a temporary combination, clearly signalizing "stop this attempt as it is in contrary to the goal ".

B. Fuzzy signature classes

On basis of the features of the boxes the robot can build a fuzzy signature for each box. This signature built up on a template or class, and every box has its own instance of the Box fuzzy Signature Class (BSC). This signature records the position, the arrangement, the dynamic and the robots working on the actually box. Let us see the construction of this fuzzy signature class. As can be seen in (7), the main signature has three sub-signatures.

$$B_i^c = \begin{bmatrix} P \\ AR \\ DY \end{bmatrix}$$
(7)

The first is the position (*P*) sub-signature which describes the actual fuzzy position of the box (e.g.: Nearly North). It has four leaves namely the points of the compass, North, East, South and West. The box is "in direction" if its reference side lays near to any main compass direction (Fig. 7.) It is important that the real position of a box has two other parameters: the latitude and the longitude of its reference point, but it does not have any importance to decision making only in navigation, so we abandon these parameters here.

Fig. 7. Box position fuzzy signature

The second branch of box fuzzy signature is the arrangement that describes the box's connections to other boxes. As it was described above, a box can connect to none, one or two other boxes. Therefore the signature has two main branches for the no connection case, and for the connected case, which has two other branches for connect to one, connect to two boxes. The leaves describe the side of connection. As we see this signature we can observe that there are some surprising permitted connect positions in it (e.g.: North or tag side). These are very useful for decision making about wrong positions and wrong dynamic of the box. The Fig. 8 presents the arrangement signature (AR) where AL is the "alone" (no connection) branch, NB are the neighbor boxes: one or two and the direction of the join.

Fig. 8. Box arrangement fuzzy signature

The next branch is the dynamic feature (DY) of the box, which is valid if robots work on the box and records what the robots are doing: push or rotate, and in which direction. This signature includes all the valid combinations of robots, and all valid movements of boxes. This is shown in Fig. 9, with the number of robots at a box (*IR*, *2R*, *3R* respectively), the effect of this combination of robots (*SH* as shift and *R* as rotate) and the direction.

These three output fuzzy signatures are able to describe the actual states of the box and give a basis for the fuzzy decision process in the robot control. Every robot builds its actual knowledge-base from the fuzzy signature classes and then boxes are assigned individual signatures in each individual robot controller.

Fig. 9. Dynamic fuzzy signature

The second necessary fuzzy signature class is the Robot state fuzzy Signature Class (RSC), which describes the state of each robot. This represents the dynamic and working behavior of the robot. In this paper we do not consider the robot signatures in detail because they do not have an important role in the primary decision making.

C. Fuzzy decision

The above described fuzzy signatures enable robots to recognize a situation in the warehouse, and then the robots use their codebooks to take action accordingly. Let us see the codebook, namely a hidden fuzzy decision tree, in the robot controller. For simplicity we have cut the decision tree to sub-trees, then arranged them in a logical sequence. The robot takes decisions from some simple cases to more complex ones. The Fig. 10 shows the entry point of the decision process. This figure depicts the steps of decision making based on fuzzy signatures, where the diamond shaped objects denote the elementary decisions (decision milestones) and hide the fuzzy signatures that are used. The used and hidden signatures are presented by a grey arrow with the signature name.

It is important to mention here this is only a local task and the final decision making needs the global signatures and other robot signatures, but these are beyond the scope of this paper. The first step in the local decision is to search for the nearest box, after which the box signature is built up or updated. In the next level, the position of the box is investigated which is described by the P signature. If the membership value of any good direction (N, E, S or W) is high enough, then the decision process steps to the next level and takes the arrangement (AR) and dynamic (DY) signatures of the box, if not then there is a simple decision: the box must rotate. Which direction? This is dependent on the global state of system, which is described by global signatures.

Fig. 10. Entry point of decision task

The arrangement and dynamic signatures are used in a partially parallel way. The Fig. 11 shows the whole decision task from this point. The robot analyzes the arrangement and dynamic of the box. If three robots work on it then there is a Stop combination and our robot (R_i) does not have any task on this box, it must search the next box. If two robots work on it and the guessed result points to higher order then R_i leaves it and searches the next near box. If the box has one or two neighbors in a good combination then the membership degree of "on the place" is raised and any dynamic (shift or rotate) is forbidden so if there any robot combination the R_i should go to the Stop position. Of course, if the neighbors of the box are not in a good place then more analysis is necessary to take the appropriate decision. If one robot waits for help there, then R_i decides which is a good position for pushing or turning the box and goes to this position. The most complex decision problem appears when any robot is not at the box; in this case R_i needs to take a decision about the box alone. This higher level problem is not covered in this paper.

Based on the above considerations it is possible to build some elements of the context and codebook for cooperating robots. It takes the form of a decision tree, where the inputs are the fuzzy signatures of the observations, the first level outputs are intention guesses and the second level outputs the concrete actions of the corresponding robot.

Fig. 11. The decision task

V. CONCLUSION

In this paper we presented the usage of fuzzy signature based algorithms on field of mobile robotics. These methods were used in totally other level of robot control. The motion control stays the lower layer of control hierarchy than the cooperation system which is a high level strategy control algorithm. We could see the applicability of fuzzy signatures on these two layers of mobile robot control.

We experimented with a new fuzzy signature based motion control system for a differentially driven mobile robot, which gives more flexibility and modularity on the control level with less computational complexity.

Here we illustrated a new idea about the communication among intelligent robots by intention guessing and fuzzy evaluation of the situation might lead to effective cooperation and the achievement of tasks that cannot be done without collaboration and communication.

REFERENCES

- L.T. Kóczy, T. Vámos, and Gy. Biró, "Fuzzy signatures," Proceedings of EUROFUSE-SIC '99, 1999, pp. 210-217.
- [2] T. Vámos, L.T. Kóczy, and Gy. Biró, "Fuzzy signarures in data mining," Proceedings of IFSA World Congress and 20th NAFIPS International Conference, 2001, pp. 2842-2846.
- [3] T.D. Gedeon, L.T. Kóczy, K.W. Wong, and P. Liu, "Effective fuzzy systems for complex structured data," *Proceedings of IASTED International Conference Control and Applications*, 2001, pp. 184-187.
- [4] J.A. Goguen, "L-fuzzy sets," J. Math. Anal. Appl. 18, 1967, pp. 145-174.
- [5] L.T. Kóczy, "Vectorial I-fuzzy sets," in: M.M. Gupta & E. Sanchez (eds.): Approximate Reasoning in Decision Analysis, North Holland, Amsterdam, 1982, pp. 151-156.
- [6] K.W. Wong, A. Chong, T.D. Gedeon, L.T. Kóczy, and T. Vámos, "Hierarchical fuzzy signature structure for complex structured data," *Proceedings of ISCIII'03 International Symposium on Computational Intelligence and Intelligent Informatics*, 2003, pp. 105-109.
- [7] Kóczy, L.T. and Gedeon T.D., "Context Dependent Reconstructive Communication," 3rd International Symposium on Computational Intelligence and Intelligent Informatics, ISCIII 2007, Agadir, Morocco, March 28-30, 2007, pp. 13-19.
- [8] Terano T. et al, "Research Project at LIFE," Laboratory for International Fuzzy Engineering Research, Yokohama 1993/94, oral presentation.